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Aims of the talk

In this talk we explore the solution of mixed symmetric linear
complementarity problems (mLCP).
The focus is on the fast and approximate solution of medium to
large size problems.
Source of mLCPs:

lubrication problems

computer game simulations (examples)

American option pricing

We study three classes of methods: a) Projected Gauss-Seidel; b)
IPMs c) Projected Gauss-Seidel + subspace minimization steps.
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Formulation of the problem

The form of the linear complementarity problem considered here is

Au + Cv + a = 0

CTu + Bv + b ≥ 0

vT (CT u + Bv + b) = 0

v ≥ 0,

where the variables of the problem are u and v . The matrix

[

A C

CT B

]

,

is an n × n positive definite matrix.
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Organization of the talk

1 Motivation.

2 Structure of the mLCP.

3 Notation.

4 Brief description of the methods.

Projected Gauss-Seidel (PGS).
Interior point methods (IPM).
PGS + subspace minimization

5 Numerical experiments.

6 Observations.
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Motivation

mLCP’s come from modeling contact forces in physical
simulation used in computer games industry. Limited amount
of resources: a) CPU time (real time); b) memory; c)
stability; d) low accuracy.

Modern systems: a model that takes into account interactions
between pairs of bodies. Each interaction is modeled by 1
inequality that amounts for contact, and 2 equalities that
model friction between the bodies.

More realism in games demands the incorporation of more
complex models in terms of physics.
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Physical Simulation Pipeline
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Time breakdown of Physical Simulation.
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Structure of the mLCP.

The matrix has the form

JDJT + E ,

where J is rectangular where rows correspond to constraints,
and columns correspond to bodies.

D is a block-diagonal matrix that incorporates inertia into the
model.

E is a diagonal matrix with positive entries. E has some
physical meaning

(JDJT + E )λ = e.

λ is the vector of contact forces.

Examples. Open Dynamics Engine (ODE). Castle destruction
demo.
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A useful reformulation

Au + Cv + a = 0

CTu + Bv + b = w

vTw = 0

v ,w ≥ 0.

A standard LCP

Mv + q = w

vTw = 0

v ,w ≥ 0,
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The QP connection

M = B − CT A−1C , q = b − CTA−1a.

min
v

φ(v) =
1

2
vTMv + qT v

s.t. v ≥ 0,
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Projected Gauss-Seidel. 70’s

A = AL + AD + AU , B = BL + BD + BU ,

Given uk , vk ≥ 0, consider the auxiliary linear complementarity
problem

(AL + AD)u + AUuk + Cv k + a = 0 (1)

CTu + (BL + BD)v + BUvk + b ≥ 0 (2)

vT (CTu + (BL + BD)v + BUvk + b) = 0 (3)

v ≥ 0 (4)
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Deriving PGS for mLCPs

Let us define (uk+1, v k+1) to be a solution of (1)-(4). Then we
have from (1)

ADuk+1 = −a− ALu
k+1
− AUuk

− Cv k .

Let us define
b̂ = b + CTuk+1 + BUvk .

Then we can write (2)-(4) as

b̂ + (BL + BD)v ≥ 0 (5)

vi [b̂ + (BL + BD)v ]i = 0, i = 1, 2, . . . , nb (6)

v ≥ 0 (7)

We can satisfy (5)-(6) by defining the ith component of the
solution v k+1 so that

[(BL + BD)vk+1]i = −b̂i ;

We cannot guarantee that v k+1
i ≥ 0, but if it is not, we can simply

set v k+1
i = 0.

José Luis Morales , Jorge Nocedal, Mikhail Smelyanskiy An Algorithm for the Approximate and Fast Solution of Linear Complementarity Problems.



Algorithm PGS

Projected Gauss-Seidel (PGS) Method

Initialize u0, v0 ≥ 0.
For k = 0, 1, 2, . . . , until a convergence test is satisfied

for i = 1, . . . , na

compute uk+1
i by previous slide

end
for i = 1, . . . , nb

compute v k+1
i by previous slide

end
End
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Numerical results with PSOR

na nb nz(JDJT ) cond(JDJT ) 10−1 10−2

7 18 162 5.83e+01 4 6
8 45 779 2.92e+03 17 120
8 48 868 2.38e+03 17 111

235 1 044 14 211 4.58e+04 61 312
449 1 821 28 010 4.22e+04 132 414

907 5 832 176 735 5.11e+07 21 16 785
948 7 344 269 765 9.02e+07 3 123 >50 000
966 8 220 368 604 9.19e+07 1 601 39 103
976 8 745 373 848 6.45e+07 7 184 >50 000
977 9 534 494 118 1.03e+08 1 246 >50 000
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Identifying the active set

name k = 2 k = 20 k = 1000 k = 10 000

1 3/4 4/4
2 7/8 7/8
3 8/10 8/10
4 12/58 40/58 58/58
5 156/254 233/254 254/254

6 1 253/1 512 1 301/1 512 1 399/1 512 1 471/1 512
7 1 504/1 828 1 523/1 828 1 614/1 828 1 707/1 828
8 2 112/2 321 2 106/2 321 2 178/2 321 2 253/2 321
9 1 728/2 158 1 743/2 158 1 870/2 158 1 976/2 158
10 2 513/2 728 2 495/2 728 2 578/2 728 2 670/2 728
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The proposed method

A few iterations of PGS give:

Au + Ĉ v̂ + a = 0 (8)

ĈTu + B̂v̂ + b̂ ≥ 0 (9)

v̂T (ĈTu + B̂v̂ + b̂) = 0 (10)

v̂ ≥ 0, (11)

where

Ĉ = C [1 : nb,m + 1 : nb], B̂ = B [m + 1 : nb,m + 1 : nb]

b̂ = b[m + 1 : nb], v̂ = v [m + 1 : nb];
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The proposed method

Since we follow an active set approach and our prediction is that
v̂ > 0 at the solution, we set the complementarity term in (10) to
zero. Thus (8) gives the reduced system

Au + Ĉ v̂ + a = 0 (12)

ĈT u + B̂v̂ + b̂ = 0, (13)

together with the condition v̂ ≥ 0.
We compute an approximate solution of this problem by solving
(12)-(13) and then projecting the solution v̂

v̂ ← max(0, v̂ ). (14)

The components of v̂ that are set to zero by the projection
operation (14) are then removed to obtain a smaller vector v̌ .
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The proposed algorithm

Projected Gauss-Seidel with Subspace Minimization

Initialize u, v ≥ 0. Choose a constant tol > 0.
repeat until a convergence test for problem (1) is satisfied

Perform kgs iterations of the projected Gauss-Seidel
iteration to obtain an iterate (u, v);
Define v̂ to be the subvector of v whose components
satisfy vi > tol ;
repeat at most ksm times (subspace minimization)

Form and solve the reduced system (12);
If the solution v̂ satisfies v̂ >tol, break;
Project the solution by setting v̂ ← max(0, v̂ );

end repeat
end repeat
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Identifying the active set

name cpu time nz(L) # Chol. fact.

6 0.50/0.22 216 080/114 864 17/7
7 1.02/0.45 406 152/218 522 18/8
8 2.40/0.63 797 989/398 821 16/7
9 1.79/0.66 646 929/341 911 19/9
10 4.67/0.87 1 222 209/604 892 17/6
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Error behaviour as a function of the CPU time
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Error behaviour as a function of the CPU time
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Observations.

PGS is able to detect a very high proportion of the active set
at the solution during the first iterations.

PGS can be very slow on difficult problems.

PGS + subspace minimization iterations ⇒ flexible method

Applying the subspace minimization repeatedly ⇒ robust
method.

PGS + subspace minimization iterations ⇒ robust and
flexible.
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